Efficient k-Nearest Neighbor Classification Over Semantically Secure Hybrid Encrypted Cloud Database
نویسندگان
چکیده
منابع مشابه
k-Nearest Neighbor Classification over Semantically Secure Encrypted Relational Data
Data Mining has wide applications in many areas such as banking, medicine, scientific research and among government agencies. Classification is one of the commonly used tasks in data mining applications. For the past decade, due to the rise of various privacy issues, many theoretical and practical solutions to the classification problem have been proposed under different security models. Howeve...
متن کاملEfficient Secure k-Nearest Neighbours over Encrypted Data
Enterprise customers of cloud services are wary of outsourcing sensitive user and business data due to inherent security and privacy concerns. In this context, storing and computing directly on encrypted data is an attractive solution, especially against insider attacks. Homomorphic encryption, the keystone enabling technology is unfortunately prohibitively expensive. In this paper, we focus on...
متن کاملK-Nearest Neighbor Categorization on Secure Data Access in Cloud
For the last few years, a extensive research has been going on query processing of relation data and more practical and theoretical solution have been suggested to query processing under different scenarios. Now days cloud computing technology is increasing rapidly, so users now have the chance to store their data in remote location. However, different privacy issues are raised on cloud computi...
متن کاملk-Nearest neighbor searching in hybrid spaces
Little work has been reported in the literature to support k-nearest neighbor (k-NN) searches/ queries in hybrid data spaces (HDS). An HDS is composed of a combination of continuous and non-ordered discrete dimensions. This combination presents new challenges in data organization and search ordering. In this paper, we present an algorithm for k-NN searches using a stages and use the properties ...
متن کاملProblem Set 1 K-nearest Neighbor Classification
In this part, you will implement k-Nearest Neighbor (k-NN) algorithm on the 8scenes category dataset of Oliva and Torralba [1]. You are given a total of 800 labeled training images (containing 100 images for each class) and 1888 unlabeled testing images. Figure 1 shows some sample images from the data set. Your task is to analyze the performance of k-NN algorithm in classifying photographs into...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2018
ISSN: 2169-3536
DOI: 10.1109/access.2018.2859758